
1

Armstrong State University
Engineering Studies

MATLAB Marina – Functions Primer

Prerequisites
The Functions Primer assumes knowledge of the MATLAB IDE, MATLAB help, arithmetic
operations, built in functions, scripts, variables, arrays, logic expressions, conditional structures,
and iteration. Material on these topics is covered in the MATLAB Marina Introduction to
MATLAB module, MATLAB Marina Variables module, MATLAB Marina Arrays module, MATLAB
Marina Logic Expressions module, MATLAB Marina Conditional Structures module, and MATLAB
Marina Iteration module.

Learning Objectives
1. Be able to write MATLAB functions to solve problems.
2. Be able to write a test program to verify the correct operation of a function.
3. Be able to use built-in and user written MATLAB functions to solve problems.

Terms
function, function definition, parameter (argument), return variable, invoke (call), scope,
optional argument

MATLAB Functions, Keywords, and Operators
function, nargin, nargout, global

Functions
As opposed to having a large program (script file) with many lines of code, programs are
typically broken up into parts. Functions are pieces of code designed to perform a specific task
or operation as part of a larger program. Functions allow one to perform the same operation on
different data (apply the same code to different data). Functions should perform a single task
and should be placed in a separate script file.

The general form of a function is shown in Figure 1. The first line of the function is the function
definition. This is followed by the function comment header, and then the code implementing
the function operation.

Figure 2a shows the implementation of a function to compute the diameter of a circle given the
circle radius.

function [output arguments] = functionName(input arguments)
% function comment header
 function implementation
end

Figure 1, General Form of Function

2

The function definition starts with the keyword function followed by a list of output
arguments enclosed in square brackets (return variables), an equal sign, the function name, and
a list of input arguments enclosed in parentheses. The square brackets enclosing the output
variables are not needed if only one value will be returned. The function comment header
specifies the function name, the operation the function performs, the syntax for how to use
(invoke or call) the function, and sometimes examples of the functions use.

The function implementation contains the MATLAB statements to perform the operation
described by the function definition. In effect, the function implementation is a program that
uses the function input arguments. The return variables must be assigned the appropriate
values before the end of the function. Functions are terminated with an end statement, but
this is not required unless the file containing the function contains a nested function. For files
that contain nested functions, all functions in the file must be terminated with an end
statement.

The script file defining the function must have the same name as the function name. For
programs to access the function, the file containing the function must be in a folder in
MATLAB’s search path (generally one should have user created functions in the same folder as
the main or test program).

Functions are passed data via their input arguments, operate on the data, and return a result to
the calling program via the output arguments. Functions cannot be run like programs; instead, a
main program calls the function. Functions are used in a program by invoking them by name,
providing a list of variables matching the function input argument list, and assigning results that

function diameter = circleDiameter(radius)
% ---
% circleDiameter.m
% ---
% circleDiameter computes diameter of circle
% ---
% Syntax: diameter = circleDiameter(radius)
% radius is radius of circle in meters
% diameter is diameter of circle in meters
% ---
% Examples:
% d = circlediameter(1.0); will return d = 2.0
% ---
% Notes: units of length are assumed to be meters
% ---

diameter = 2.0 * radius;
end

Figure 2a, circleDiameter Function

jar:file:///C:/Program%20Files/MATLAB/R2010a/help/techdoc/help.jar%21/ref/end.html

3

the function returns to program variables for future use. Figure 2b shows a program that uses
the circleDiameter function to compute and display a circle’s diameter after reading in the
radius.

The program of Figure 2b reads in the circle radius from the user, calls the circleDiameter
function passing it the user-input radius value, assigns the diameter that the function returns to
the program variable named diameterOfCircle, and displays the diameter. Notice that the
function does not read in the radius nor does it display the diameter. The radius is passed to the
function via the function input argument and the diameter is displayed by the calling program.

Functions should not read in data from the user (using input) or display data (using display,
plot, etc) unless that is the functions only task. Data needed by the function should be passed in
via the function input arguments and results should be returned and used/displayed in the
calling program.

Built in MATLAB functions are used by providing values to the function and assigning the result
the function returned to a variable. User created MATLAB functions are invoked (called) in the
same manner as built in MATLAB functions.

For each data value needed by the function, there must be a corresponding variable in the
input argument list. The arguments passed to the function via the function call can either be
literals (constants), variables, or expressions. The values passed to the function are matched
left to right. The order in which values are passed is important. The function passes back values
via the output argument list and these should be assigned (saved) to variables in the calling
program for future use.

Scope of Variables
The scope of a variable is the portion of the program where it can be referenced. Variables
created in a program or the command window are global variables that can be accessed
anywhere. Variables declared inside functions (or in the argument list of functions) are local
variables and can only be referenced inside the function. These variables are created when the
function is called, exist as long as the function is executing, and are destroyed after the function

clear;
clc;
close all;

radiusOfCircle = input('Enter radius of circle in meters: ');
diameterOfCircle = circleDiameter(radiusOfCircle);

disp('Circle has diameter’);
disp(diameterOfCircle);

Figure 2b, Program to Determine Diameter of Circle

4

is completed. Variables with different scope can have the same name, but they are still
different variables.

Figures 3a and 3d show the MATLAB workspace before and after circleDiameter function
is called in the program of Figure 2b. Figures 3b and 3c show the local workspace while the
circleDiameter function is executing.

Notice that in Figures 3b and 3c, the circleDiameter function does not have access to the
variables in the main programs workspace; it only has access to the variables in its own local
workspace. Notice that in Figure 3d, the main program does not have access to the local
variables created as part of the circleDiameter function call. Once the function returns its
result, its local workspace goes away.

MATLAB passes arguments to functions by value. When a function is called, copies of each
argument are passed in to the function to the function parameter variables. Even if that
function variable value is modified in the function it has no effect on the original value in the
calling program. Naming a main program variable and a function variable the same name does
not allow the function access to the main program’s variable value. Similarly, if the function
changes the value of the variable, the main program’s version of that variable is not changed.

Global Variables
Variables created in the command window or in a main script show up in the MATLAB
workspace are available until cleared. Functions have their own local workspace and cannot
access variables in the main MATLAB workspace or in the calling script. Variables created in a
function are local to that function and once the function is done they are no longer available.
Functions only have access to variables in their parameter list or declared inside the function.

Figure 3a, MATLAB Workspace Before
circleDiameter Function Call

Figure 3b, MATLAB Workspace During
 circleDiameter Function Execution

Figure 3c, MATLAB Workspace During
 circleDiameter Function Call

Figure 3d, MATLAB Workspace After
circleDiameter Function Call

5

The keyword global allows one to create a variable that is accessible in the calling script and
in functions that are called from the script. The global variables must be declared both in the
calling script and in the function they are to be accessed from. Global variables do not need to
be passed in as arguments or returned as results. Global variables are generally frowned upon
except in cases where one would otherwise have to duplicate a large quantity of data that
would tax the system’s memory resources.

Testing and Using Functions
Functions should be exhaustively tested before their general use. Functions are typically used
over and over and by users other than the function designer. Test programs should invoke the
function for all legitimate function arguments and function arguments that may cause errors.

Consider testing the function of Figure 4a that computes the gravitational force (Newtonian)
between two bodies of mass. The gravitational force between two bodies of mass is
proportional to their masses and inversely proportional to the square of the distance between

them, 1 2
2

m mF G
r

= , where G is the universal gravitational constant.

Since the gravitationalForce function consists of straight forward formula, a single test
case would verify the correct operation for positive masses and distances. To ensure correct
operation for all cases, additional test cases for negative and zero masses and negative and zero
distances should also be used. Some of the additional test cases may produce errors and error
handling may need to be added. Initial test cases should produce results that are easily verified
as correct. For this example, a test case with one of the masses being the earth and the other a
person on the earth’s surface should produce a force that if divided by the person’s mass would

function F = gravitationalForce(m1, m2, r)
% ---
% gravitationalForce.m
% ---
% gravitationalForce computes the force of attraction
% of two bodies of mass on each other
% ---
% Syntax: F = gravitationalForce(m1, m2, r)
% m1 is mass of object one in kg
% m2 is mass of object two in kg
% r is distance between centers of mass of objects in meters
% F is the gravitational force in N
% ---

G = 6.67384e-11; % universal gravitational constant N*m^2/kg^2
F = G*m1*m2/r^2;
end

Figure 4a, gravitationalForce Function

6

give the force of gravity. Figure 4b shows one test program for the gravitationalForce
function. Figure 4c shows the results of running the test program that calls the
gravitationalForce function three times and displays each of the three results.

The first result is correct as the gravitational force of 686 N when divided by the mass of person

yields the force of gravity 2686 9.8 /
70

Fg m s
m

= = = . The second result makes sense as the

gravitational force between two relatively small masses should be small (the result can be
verified correct using a calculator). The third result also makes sense as dividing a number by
zero should produce either an error or infinity, in this case infinity. Even though the third result
makes sense, error handling should be added to this function as an infinite result may produce
problems later in a program if this value was used for further calculations.

clear;
clc;
close all;

% earth and person on earth's surface
% masses in kg and distance in m
massEarth = 5.98e24;
massPerson = 70;
distance = 6.38e6;
force = gravitationalForce(massEarth, massPerson, distance);
disp(force)

% two people one meter apart
massPerson2 = 70;
distance = 1;
force = gravitationalForce(massPerson, massPerson2, distance);
disp(force)

% distance of zero
distance = 0;
force = gravitationalForce(massPerson, massPerson2, distance);
disp(force)

Figure 4b, Test Program for gravitationalForce Function

686.3311

3.2702e-07

Inf

Figure 4c, Results of Test Program for gravitationalForce Function

7

Notice that the values for the masses and distance are defined in the test program not in the
function. The function does not redefine the function input arguments by assignment or
reading in a new value. The function does not display the display the computed force; the
computed gravitational force is returned to the test program where it is then displayed.

Functions that Return Multiple Results
Functions that return more than one result need one return variable for each result in the
function definition. The return variables are enclosed in square brackets and separated by
commas. Figure 5a shows the implementation of a function rectToPolar that converts 2D
rectangular coordinates to polar coordinates. Figure 5b shows a test program that verifies the
correct operation of the rectToPolar function and illustrates its use.

The rectToPolar function requires two input arguments: the x and y values of the
rectangular coordinates and two output arguments: the r and theta values of the polar
coordinates. To verify the correct operation of the function, values of x and y in the first
through fourth quadrants and on each axis should be tested (seven test cases).

Normally the output of statements would be suppressed, but for test programs it is often easier
to use the echoed result than a display statement.

function [r, theta] = rectToPolar(x, y)
% ---
% rectToPolar.m
% ---
% rectToPolar converts two-dimensional rectangular
% to polar coordinates
% ---
% Syntax: [r, theta] = rectToPolar(x, y)
% x is the x coordinate
% y is the y coordinate
% r is the radius
% theta is the angle in radians (-pi <= theta <= pi)
% ---

r = sqrt(x^2 + y^2);
theta = atan2(y, x);
end

Figure 5a, rectToPolar Function

8

Functions with Optional Arguments
Default values of function input arguments can be provided by checking for the number of
arguments passed in to the function and assigning default values to arguments that did not
have a value passed to them. The MATLAB function nargin returns the number of arguments
passed into a function. This can be used inside a function to specify default values for
arguments that are not specified in the function call by a user. Remember that function
arguments are matched from left to right, so optional arguments must be the arguments on the
right of the parameter list. The MATLAB function nargout returns the number of storage
variables in the calling statement of the function. This allows a function to omit computing
return results that are not needed.

The function evaluateCosine of Figure 6a illustrates the use of optional arguments to
evaluate the function () ()cosx t A tω φ= + . The function has six input arguments of which one,
fs, is optional. The program of Figure 6b tests the function for both a specified sampling
frequency fs and the default sampling frequency.

Notice that evaluateCosine function of Figure 6a does not display the tt or xx vectors
nor does it plot them. These vectors are returned to the calling statement where they can be

clear;
clc;
close all;

% first quadrant test
x = 2; y = 3;
[r, th] = rectToPolar(x,y)
% second quadrant test
x = -2; y = 3;
[r, th] = rectToPolar(x,y)
% third quadrant test
x = -2; y = -3;
[r, th] = rectToPolar(x,y)
% fourth quadrant test
x = 2; y = -3;
[r, th] = rectToPolar(x,y)
% test on axes
x = 2; y = 0;
[r, th] = rectToPolar(x,y)
x = 0; y = 3;
[r, th] = rectToPolar(x,y)
x = -2; y = 0;
[r, th] = rectToPolar(x,y)

Figure 5b, Test Program for rectToPolar Function

9

displayed or plotted. The evaluateCosine function does not perform any input, i.e. since
tstart, tend, etc are passed in as arguments they should not be read in from the user.
These values are set up in the calling program and passed to the function via the function call.

function [xx, tt] = evaluateCosine(A, w, phi, tstart, tend, fs)
% ---
% evaluateCosine.m
% ---
% evaluateCosine evaluates a cosine function over the desired
% time range
% ---
% syntax: [xx, tt] = evaluateCosine(A, w, phi, tstart, tend, fs)
% A is the amplitude of sinusoid
% w is the frequency of the sinusoid (rad/sec)
% phi is the phase of the sinusoid (rad)
% tstart is start time (sec)
% tend is end time (sec)
% fs is the sampling frequency in Hz
% xx is the cosine function values
% tt is time vector
% ---
if (nargin < 6)
 % default sampling frequency of 10 times fmax
 fs = 5*(w/pi);
end
tt = tstart : 1/fs : tend;
xx = A*cos(w*tt + phi);
end

Figure 6a, evaluateCosine Function

% amplitude, frequency, and phase shift
A = 2;
w = 2*pi*100;
phi = pi/2;
% test specifying sampling frequency
[xx1, tt1] = evaluateCosine(A, w, phi, 0.0, 0.025, 25*100);
figure(1)
plot(tt1, xx1), xlabel('t (sec)'), ylabel('x(t), fs = 2.5kHz');
% test using default sampling frequency
[xx2, tt2] = evaluateCosine(A, w, phi, 0.0, 0.025);
figure(2)
plot(tt2, xx2), xlabel('t (sec)'), ylabel('x(t),default fs');

Figure 6b, Test Program for evaluateCosine Function

10

Designing Functions
Functions allow one to perform the same operation on different data (apply the same code to
different data). Remember that when designing functions, someone should be able to use the
function without knowing how it is implemented. The user should only need to know what the
function does, what arguments must be passed in, and what the function returns. The
implementation of the function could be changed and not affect its use if the function signature
(function name, parameter list, and return parameters) is not altered.

When designing a new function, it is helpful to ask and answer the questions:

• What should be passed to the function (what data does the function need)? This will
determine the function input arguments.

• What operation should the function perform? The function algorithm and
implementation will follow from this.

• What should the function return (what is passed back from the function)? This will
determine the function output arguments.

It is often useful to generate the algorithm for a specific case of the operation and then once
that works generalize it. Add any error handling last after the operation has been tested and
determine to be working.

Build Array Function
Building an array creates a new collection of data. The data for the collection can come from
the user or more typically is read from an external file. The buildArray function needs the
number of elements in the array and will return a new 1D array. The function will need to
allocate space for the array, read in and store the value, and return the array. The
buildArray function of Figure 7 builds a 1D array (vector) of numbers read from the user.

The buildArray function operates as follows:

• When the function is called, the number of elements for the 1D array should be passed
to the function.

• Space for a 1D array of that many elements is allocated.
• Each new element is read from the user and stored in the next empty space in the 1D

array.
• When the array is full, the resulting 1D array is returned from the function.

Note for the buildArray function, input is performed. It is acceptable in this case to have
user or file input since that is function’s operation. The function should not perform any
operations on the data read in except possibly error/validity checking. The data is read in and
returned to the calling statement. The code [‘string1’, ‘string2’] concatenates two strings. The
int2str function converts an integer to a character string.

Error checking and/or default arguments could be added to ensure that the number of
elements is greater than or equal to zero or if the function is called with no input arguments an
empty 1D array is returned.

11

Sum Vector Function
Summing the elements of a 1D array was covered in the MATLAB Marina For Loops Primer. The
program of Figure 8a sums the elements of a vector.

function result = buildArray(numberElements)
% ---
% buildArray.m
% ---
% buildArray creates a new 1D array of numbers
% read from the user
% ---
% Syntax: result = buildArray(numberElements)
% numberElements is the number of elements in the new array
% result is the new 1D array
% ---

% allocate space for new 1D array
result = zeros(1,numberElements);
% read in elements from user and store in array
for k = 1:1:numberElements
 result(k) = input(['Enter element ',int2str(k), ': ']);
end

end

Figure 7, buildArray Function

v = [17, 32, 13, 42, 63, 57];
% set initial result to zero
result = 0;

% iterate through the elements of the vector
for k = 1:1:length(v)
 % add each element to the previous result
 result = result + v(k);
end

% display result
disp(result);

Figure 8a, Program to Sum Elements of a Vector (this is Figure 4b from For Loops Primer)

12

To convert this program to a sumVector function:
• The vector to sum should be passed to the function rather than created in the function

as in the program. The function input argument will be the vector.
• The function body will be the same as the programs sum vector operation; initialize the

result to zero and perform a running sum.
• The function should not display the resulting sum but rather return the sum to the

calling statement. The function return argument will be the sum of the vector.

Figure 8b shows the sumVector function. The sumVector function should be tested for the
same test cases as a sum vector program: vector of length one, vector of length two or greater,
and an empty vector.

The loop for the sumVector function is iterating over the indices of the vector. Error checking
could be added to ensure that the number of elements in the vector is greater than zero.

Search (Find Equal) Vector Function
Searching involves going through a collection of data to find a match to a search criteria.
Common searches are to find elements equal to, less than, or greater than a desired value. The
result of the search is an indication that a match was found and may include the location in the
collection where the match was found. The findEqual function of Figure 9 searches a vector
of numbers for all elements that equal a number.

function result = sumVector(x)
% ---
% sumVector.m
% ---
% sumVector sums the elements of a vector
% ---
% Syntax: result = sumVector(x)
% x is the vector of numbers
% result is the sum of the elements in the vector
% ---
% Examples: r = sumVector([6, 3, 8, 12]); results in r = 29
% ---

result = 0.0;
for k = 1:1:length(x)
 result = result + x(k);
end
end

Figure 8b, sumVector Function

13

To find all the elements in a vector whose value equals some desired value:
• The function will need the vector to search and the desired value to search for. The function

arguments will be the vector and the search value.
• The function will need to return a vector of indices corresponding to the array locations

where the value was found. The function output argument will be a vector.
• The function will start with an empty vector of indices.
• Each element of the vector will need to be compared to the desired value and if they match,

the location (index) of the match is stored in the result. This will require that the result
vector increases in size each time a match is found.

• Once all the elements in the vector have been compared the vector of indices is returned (if
no matches are found an empty vector is returned).

Test cases for the findEqual function are a vector and value with no matches, a vector and
value with a single match, and a vector and value with more than one match. The findEqual
function could be modified to search for only the first match. Error checking could be added to
ensure that the vector to search has length greater than zero.

Last modified Friday, September 26, 2014

This work by Thomas Murphy is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License.

function result = findEqual(x, value)
% ---
% findEqual.m
% ---
% findEqual determines the location in the vector of the value
% ---
% Syntax: result = findEqual(x, value)
% x is the vector of numbers
% value is the number to match
% result is a vector of indices where matches were found
% ---
n = 0;
result = [];
% go though the vector, save indices where matches found
for k = 1:1:length(x)
 if (x(k) == value)
 n = n + 1;
 result(n) = k;
 end
end
end

Figure 9, findEqual Function

http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

	Prerequisites
	Learning Objectives
	Terms
	MATLAB Functions, Keywords, and Operators
	Functions
	Scope of Variables
	Testing and Using Functions
	Functions that Return Multiple Results
	Functions with Optional Arguments
	Designing Functions
	Build Array Function
	Sum Vector Function
	Search (Find Equal) Vector Function

